
Crossing the Reality Gap in Evolutionary Robotics
by Promoting Transferable Controllers

Sylvain Koos
ISIR, CNRS UMR 7222

Univ. Pierre et Marie Curie
F-75005, Paris, France
koos@isir.upmc.fr

Jean-Baptiste Mouret
ISIR, CNRS UMR 7222

Univ. Pierre et Marie Curie
F-75005, Paris, France
mouret@isir.upmc.fr

Stéphane Doncieux
ISIR, CNRS UMR 7222

Univ. Pierre et Marie Curie
F-75005, Paris, France

doncieux@isir.upmc.fr

ABSTRACT

The reality gap, that often makes controllers evolved in sim-
ulation inefficient once transferred onto the real system, re-
mains a critical issue in Evolutionary Robotics (ER); it pre-
vents ER application to real-world problems. We hypothe-
size that this gap mainly stems from a conflict between the
efficiency of the solutions in simulation and their transfer-
ability from simulation to reality: best solutions in simula-
tion often rely on bad simulated phenomena (e.g. the most
dynamic ones). This hypothesis leads to a multi-objective
formulation of ER in which two main objectives are opti-
mized via a Pareto-based Multi-Objective Evolutionary Al-
gorithm: (1) the fitness and (2) the transferability. To eval-
uate this second objective, a simulation-to-reality disparity
value is approximated for each controller. The proposed
method is applied to the evolution of walking controllers for
a real 8-DOF quadrupedal robot. It successfully finds effi-
cient and well-transferable controllers with only a few ex-
periments in reality.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Experimentation

1. INTRODUCTION
In Evolutionary Robotics [18], solutions are commonly

evolved in simulation for the purpose of speeding the search.
The best controllers found in silico are then transferred onto
the real device. However, evolutionary algorithms often
exploit simulation’s discrepancies in an opportunistic man-
ner to achieve high fitness values with unrealistic behaviors.
This problem is called reality gap [18, 12]: if one transfers a
controller designed in simulation that relies on badly mod-
eled phenomena, the behavior observed in simulation doesn’t
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match with the one observed in reality. This problem re-
mains a critical issue in Evolutionary Robotics as it often
prevents from applying evolutionary results to real robots.
More generally, it occurs whenever a controller is designed in
simulation before application to a physical target robot. For
instance, Palmer et al. reported numerous reality gap prob-
lems when working on a 12-DOF bipedal walking robot [19].

A straightforward approach to deal with the reality gap
is to rely as little as possible on simulations, for instance by
evolving solutions directly on the physical robot [6]. Such
a method is clearly not possible with the many robots for
which transfer experiments are time consuming or even dan-
gerous for the device: in these common cases, it is necessary
to limit the number of transfers by relying on simulations.
Other works handle the gap between simulation and reality
as environmental variations that can be overcome by robust
or adaptive controllers [7]. But, such approaches assume
that the solution obtained in simulation behaves similarly
in reality, as it can’t efficiently re-adapt its behavior from
scratch. Simulations can also be improved online by coe-
volving with robot’s controllers: transfer experiments are
conducted to generate relevant learning data to evaluate the
evolved simulators [2]. However, when the simulator has to
model complex phenomena, it can’t be easily evolved online.

This paper introduces an alternative method based on an
evaluation of the transferability. A controller is said transfer-
able if the corresponding trajectories of the robot (expressed
in a relevant state space) in simulation and in reality are
quantitatively similar. Based on this definition, we propose
a new evolutionary approach that aims to:

• find controllers that are both relevant for a given task
and transferable from simulation to reality;

• minimize the number of transfers by relying at most on
the simulation and only conducting a few experiments
on the real robot during the evolutionary run.

Solutions that behave at best in simulation frequently ex-
ploit bugs or badly modeled phenomena, making them not
transferable. Transferability and efficiency therefore appear
to be conflicting objectives. In order to look for relevant
trade-off solutions, we propose to optimize solutions with a
Pareto-based Multi-Objective Evolutionary Algorithm (MOEA)
in which two objectives are defined: a task-dependent fitness
only computed in simulation and a transferability objective.

To estimate the transferability of a given controller from
simulation to reality, we introduce a simulation-to-reality
disparity (STR disparity) measure that evaluates the dispar-
ities between the corresponding simulated and real behav-



Figure 1: Left, the real robot used for approach’s
validation, designed as a reduced scale of the robot
Hylos, pictured right.

iors of the robot: the higher the STR disparity, the worse
the transferability. However, as the number of transfers has
to be minimized, the exact STR disparity value for each con-
troller can’t be obtained. Consequently, we also introduce
an approximation of this STR disparity that depends on the
exact STR disparities of already transferred controllers and
on behavioral distances [16, 14] to these controllers.

This approach is validated on an 8-DOF wheeled-legged
quadrupedal walking robot (Figure 1), as such a device brings
into play various gaits more or less dynamic and complex to
simulate, then possibly more or less transferable.

2. RELATED WORK
As the reality gap springs from inadequacies between the

reality and the simulation, a first attempt to deal with this
problem consists in evolving the solutions directly on the real
device. Such experiments have been done in [6] with a Khep-
era mobile robot to find robust controllers that can adapt
online to the variations encountered by the robot: environ-
ment, battery lifetime, etc. Nevertheless, as experiments are
time consuming and dangerous for physical devices, it is of-
ten attractive to rely more on simulations and to minimize
the number of transfers. As part of the GOLEM project,
one of whose goals consists in coevolving morphologies and
controllers, Pollack et al. [20] propose to evolve the solutions
in simulation and to finish the evolutionary run with some
generations on the real robot. First, the robot’s morphology
and its controller are coevolved within a realistic simulation.
Next, an embodied evolution takes place on a population of
physical robots with the best morphology to overcome the
reality gap. But, such an approach assumes that the solu-
tions’ real behavior and simulated behavior are related, i.e.
that the gap is sufficiently small.

Another attempt to deal with the reality gap consists in
building a minimal simulation [12] by only modeling mean-
ingful parts of the simulation related to the target behav-
ior. The unwanted phenomena are hidden in an envelope

of noise so that the evolved solutions can’t exploit them
and have to be robust enough to achieve high fitness values.
This approach has been successfully applied to design walk-
ing gaits for an octopod robot. Moreover, the more realistic
the amount of noise is, the better the transfer should be
[15]. The robustness of the behaviors can also be obtained
by evaluating the solutions in different simulated environ-
ments as in [21]. Nevertheless, it is hard to find the right
level of robustness needed to overcome the reality gap for a
given task.

Some other works deal with the reality gap as an envi-
ronment variation to be overcome online. The goal is then

to find flexible enough controllers that behave well in sim-
ulation, but can adapt online to the gap once transferred
onto the real robot. In [10], an anticipation module allows
to build a model of the motor consequences in the simulated
environment. Then, if some differences are encountered once
in reality between this model and the current environment,
a correction module performs online adaptation to improve
the behavior and overcome the gap. The flexibility can also
be intrinsic to the controller structure. In [7], synaptic plas-
ticity of neural network controllers is used to learn several
sub-behaviors and also to overcome the gap when a solution
is transferred onto the real device by adapting online to the
“new” environment. Once again, if the real behavior differs
a lot from the simulated one, adaptation is not possible.

In order to evolve solutions while enhancing simulations,
some authors resort to coevolution to improve both con-
trollers and simulators at the same time. In [2], Bongard
et al. introduce the Exploration-Estimation Algorithm that
evolves two populations: simulators and controllers. The
simulators have to model the previously observed real data
and the controller that discriminates at most between these
simulators is transferred onto the real device to generate new
meaningful learning data for the modeling part. This pro-
cess is iterated until a good simulator is found and relevant
controllers for a given task can next be built using it. Such a
method allows to efficiently explore the solution space with a
few transfer experiments. A similar method based on multi-
objective evaluation of the solutions is applied to a simu-
lated quadrotor helicopter in [13]. It looks for controllers
that maximize simulators’ disagreement and achieve a given
stabilization task. Such coevolutionary methods rely on the
assumption that the simulator can easily be upgraded with
only few experiments, that is when modeling simple dynam-
ics or simply adjusting a few parameters.

Also based on coevolution between simulators and con-
trollers, the Back-to-Reality algorithm [22] doesn’t resort to
a disagreement measure, but try to reduce the fitness vari-
ation observed between simulation and reality. Once the
controllers have sufficiently converged within the best simu-
lator, they are transferred onto the real robot and the fitness
variations of the individuals that behave at best in reality
are used to evolve better simulators, and so on. As for the
Exploration-Estimation Algorithm, the coevolution process
ends when a good simulator and a good controller are found,
nevertheless it needs more experiments on the physical de-
vice. The approach is applied to a ball-kicking task with a
Sony AIBO robot.

In this paper, contrary to coevolutionary approaches, the
simulator is designed once and not improved afterwards.
Off-the-shelf simulators therefore don’t require to be parame-
trized, making them easy to use. Explicitly idenfiying in-
correctly simulated phenomena, for instance to add noise, is
also not necessary to employ the method introduced here.

3. APPROACH
Our goal consists in evolving controllers that are both rel-

evant for a given task and well-transferable from simulation
to reality. Each of these aspects is evaluated by an objective
in a multi-objective way: the task-dependent fitness and the
approximated STR disparity objective. We first describe the
underlying framework, before detailing the algorithm. An
outline of the algorithm is shown on Figure 2.



3.1 Definitions

Behavioral features and distance.
For each controller evaluated in simulation, we assume

that its corresponding behavior can be summed up by n
values, called behavioral features. Once computed, these
features allow to define a behavioral distance between indi-
viduals. Let b(1) and b(2) be the vectors of n behavioral
features corresponding to the controllers c(1) and c(2), the
behavioral distance b dist between these controllers is:

b dist(c(1), c(2)) = ||b(1) − b(2)||2

This behavioral distance allows to compare controllers in
a simple and fast manner without any dependence on con-
trollers’ genotype/phenotype or assumption about it.

Behavioral diversity.
To quantify the diversity of a controller from the already

transferred ones, we define a behavioral diversity value as
follows1 . Let CT be the set of the already transferred con-
trollers and b dist the behavioral distance, the behavioral
diversity value diversity(c) for a given controller c is:

diversity(c) = minci∈CT
b dist(c, ci)

STR disparity.
To estimate controller’s transferability, an exact simulation-

to-reality disparity value is computed by transferring a con-
troller and comparing the corresponding real and simulated
behaviors of the robot. Let us assume that some controllers
have already been transferred onto the real robot, the behav-
ioral distance defined above allows to compute an approxi-

mated STR disparity value for any controller c. Let CT be
the set of the already transferred controllers and D∗(ci) the
exact STR disparity value corresponding to the controller
ci ∈ CT , the approximated STR disparity D̂ of c is:

D̂(c) =
1

N

X

ci∈CT

D∗(ci)

b dist(c, ci)
,

with N =
X

ci∈CT

1

b dist(c, ci)

Evaluation objectives.
The evaluation process only takes place in simulation.

Each controller is evaluated by 2 main objectives in a multi-
objective manner:

1. the task-dependent fitness, to find good controllers;

2. the corresponding approximated STR disparity, to find
transferable controllers.

Moreover, in order to minimize the number of transfers we
want to efficiently explore the controller state space. Explo-
ration can be improved by maintaining behavioral diversity
among the population with the help of a third objective [16]:

3. the behavioral diversity value defined above.

1Such a diversity is neither genotypic nor phenotypic but
behavioral, as it only is derived from the robot’s behavior.

Figure 2: Steps of the proposed algorithm at each
generation – A1. The behavioral features and the
task-dependent fitness are evaluated for each con-
troller in simulation. A2. The behavioral features of
a given controller allow to compute the correspond-
ing approximated STR disparity along with the di-
versity value based on behavioral distances to the
already transferred controllers. B. If this behavioral
diversity value is high enough for some controllers,
one among them is transferred onto the real system
and the corresponding exact STR disparity is com-
puted by comparing the observed simulated and real
behaviors of the robot. C. The evolutionary opera-
tors are applied to controllers and the selection step
builds the next population.

Such a diversity objective looks for solutions that show the
more different behaviors from those of the already trans-
ferred controllers and ensures that any new experiment is
meaningful.

3.2 Algorithm outline
To compute the approximated STR disparity values at

the beginning of a run, we assume that a controller c0 has
already been transferred onto the real system. The corre-
sponding exact STR disparity D∗(c0) and its behavioral fea-
tures are then available and an approximated STR disparity
value can be computed for each controller.

Each generation of the algorithm takes place as follows
(Figure 2):

A. evaluation of the controllers:

A1. computation of the task-dependent fitness objec-
tive and the behavioral features;

A2. evaluation of the 2 other objectives in relation to
the already transferred controllers (approximated
STR disparity and diversity objective);

B. if some controllers have a high enough diversity, one
among them is transferred onto the real system;

C. application of evolutionary operators and generation
of the next population.

The transfer step B occurs at each generation: once all
controllers are evaluated, at most one controller from the
population is transferred onto the real system. In order to
transfer different enough behaviors from those correspond-
ing to the already transferred controllers and then to limit



Figure 3: Illustration of the best compromise defi-
nition on a non-dominated set.

the number of experiments, we rely on a diversity thresh-

old τdiv: one controller among those in the current popula-
tion whose behavioral diversity value is greater than τdiv is
transferred. As several selection schemes are possible, some
algorithm variants have been implemented. These variants
will be detailed in the next section.

The diversity threshold is designed by hand to achieve a
given number of transfers on average during the whole evo-
lutionary run. When no controller has a sufficiently high di-
versity value, there is no transfer for this generation. When
a controller is transferred, the corresponding exact STR dis-
parity is recorded. It will be used along with its behav-
ioral features in simulation to compute both approximated
STR disparity and diversity values for the evolved controllers
from the next generation to the end of the run.

3.3 Best solution of a run
At the end of any evolutionary multi-objective run, there

is a set of optimal solutions instead of a single one: the
non-dominated set. Nevertheless, we want to keep only one
“best” solution by run.

As STR disparity values greater than 1 empirically means
bad transfers, we call transferable non-dominated set the
part of the non-dominated set that corresponds to STR dis-
parities lower than 1. There are two possible cases: if the
transferable non-dominated set is empty, the best solution
of the run is the solution with the lowest STR disparity in
the non-dominated set, although it should not transfer well;
otherwise, we have to define a best compromise solution on
this transferable set.

Let us construct the approximated ideal point whose co-
ordinates are the optimal values for each objective in the
transferable non-dominated set. We then select as best com-

promise solution the solution whose distance to the approx-
imated ideal point is minimal. It is illustrated on Figure 3.

4. EXPERIMENTS

4.1 Robot and experimental setups
Locomotion problems have often been addressed in Evolu-

tionary Robotics. In particular, quadrupedal walking offers
the advantage of various kinds of gaits: from static and easy
to model walks to more dynamic and complex ones. As these
gaits don’t need the same level of accuracy to be correctly
modeled in a simulation, they are expected to achieve dif-
ferent transferability performances on the real device. To
exploit such a gait variety, the task we want to achieve here
consists in finding transferable walking gaits as fast as possi-

ble on a quadrupedal 8-DOF robot (Figure 1). The physical
device is made from Bioloid Kit and has been built as a
reduced scale model of the wheeled-legged robot Hylos [8]
(Figure 1), designed for autonomous planetary/volcanic ex-
ploration. Each leg includes 4 Dynamixel AX-12+ Robot
Actuators. As we deal with walking gaits, we only control
2 actuators by leg and wheels’ positions are fixed. Each leg
then includes an upper leg motor and a lower leg motor,
all controlled in position. For each actuator, the speed de-
pends on the position error. During the experiments, the
robot is supplied with a power cable and controlled with a
USB2Dynamixel device connected to a laptop.

We also use a simulator relying on the Bullet Physics
Library, an open source physics engine [1]. The following
points have been carefully modeled: dimensions of the robot,
masses of the different parts, mass asymmetry of the main
body, contact areas of the wheels. The simulated robot is
made of 14 rigid bodies and 8 hinge constraints to model
joints. In order to validate our approach, we rely on two
versions of this simulator: an accurate simulator that also
models the servos’ build-in microcontroller as described in
the Dynamixel documentation and a simple simulator that
relies on a proportional relation between the speed and the
position error.

Two experimental setups are designed with these simula-
tors:

• Exp1 uses the accurate simulation as“real” system and
the simple one as simulated system;

• Exp2 relies on the accurate simulation and the real
robot.

The setup Exp1 allows to test the algorithm variants in a
more systematic way as the whole process in silico is fast and
the results obtained with the setup Exp2 aims at validating
the approach. Each algorithm variant has been repeated 10
times in setup Exp1 and 5 times in setup Exp2.

Experiments conducted in simulation and in reality follow
the same outline. At the beginning of each experiment, all
joint angles are set to 0. The 3D trajectory of robot’s geo-
metric center is then sampled at 20 Hz for 10 seconds (i.e.
200 data points). New motor positions are sent each 0.1 sec-
onds according to the controller. Once an evaluation is done
on the real robot, the initial position is reset to (0, 0, 0) in
the dataset by subtracting the initial coordinate values from
each data point. It allows not to depend on initial positions
when comparing trajectories.

For the experiments in reality, robot’s 3D trajectory is
recorded with three CODA cx1 scanners (Charnwood Dy-
namics Ltd, UK). To track geometric center motion, we rely
on 2 markers, 1 on each side of the robot (front and rear,
see Figure 1). The recording is valid if markers’ visibility
is greater than 95%, otherwise the experiment has to be
done again. The trajectory of the geometric center is then
obtained by averaging the 2 markers’ positions.

4.2 Controllers, behaviors and STR disparity
To study the reality gap problem in minimal conditions,

we rely on one simple sinusoidal controller by motor. All
the sinusoidal controllers depend on the same two real pa-
rameters (p1, p2) ∈ [0, 1]2. The desired angular position αd

of the motor i at time t is obtained by:

αd(i, t) = dir(i) ∗ p1 − p2 ∗ sin( 2∗π∗t

20
− φ(i))



dir(i) is 1 for motors of the front-right and rear-left legs,
-1 else (see Figure 1 for orientation). The phase angle φ(i) is
0 for the upper leg motors and π/2 for the lower leg motors.

Three behavioral features are introduced to sum up the
behavior of a given controller in simulation:

• the distance covered during the experiment;

• the mean height of the geometric center of the robot;

• the angular orientation of the robot at the end of its
behavior.

These features are normalized by their upper bounds in
the considered simulation before any use. At each controller
evaluation made within the simulator, these behavioral fea-
tures are computed. If the controller has also been trans-
ferred onto the real robot, the real and simulated distances
from the origin

p

x2 + y2 of the robot’s geometric center are
computed respectively from the recorded real and simulated
trajectories for each sampled data point. These distances
are then used to evaluate the corresponding controller’s ex-

act STR disparity. Let S and R be the distances from the
origin respectively obtained in simulation and in reality, let
S (resp. R) be the mean of S (resp. R), the exact STR
disparity D∗(c) of the controller c is the normalized Mean
Square Error (nMSE) between S and R:

D∗(c) =
P200

i=1
(Si−Ri)

2

S R

Such a STR disparity measure allows to accurately eval-
uate variations between simulated and real trajectories that
correspond to a given controller. It ensures that only trans-
ferable controllers will correspond to low STR disparities.

4.3 Algorithms

4.3.1 Proposed Algorithm

The proposed algorithm relies on multi-objective opti-
mization with a Pareto-based ranking scheme. Regarding
the implementation2, we use NSGA-II [5], an efficient state-
of-the-art MOEA based on non-dominated sorting and eli-
tist tournament selection. The evolved genotypes are the
two parameters of the controllers described in the previ-
ous section, (p1, p2) ∈ [0, 1]2. Two operators are defined
on the genotype: Gaussian point mutation3 and recombina-
tion crossover. The mutation probability is 0.5. For each
run, 40 individuals are evolved during 100 generations.

As we look for fast walking gaits, the task-dependent fit-
ness is the covered distance during the experiment. Several
variants of the algorithm are implemented (Table 1) depend-
ing on: (1) the selection scheme of the candidate controller
to transfer at each generation, and (2) the presence/lack of
the diversity objective.

The random transfer selection scheme consists in choos-
ing at random the controller to transfer among those whose
diversity value is greater than the diversity threshold τdiv .
The “max. diversity” scheme consists in transferring the
controller that maximizes the diversity value if it is greater
than τdiv.

2This work has been implemented within the Sferesv2 frame-
work [17]. The source code is available at:
http://www.isir.fr/evorob_db
3Mutation parameters: 0 mean, 0.2 standard deviation (sd)

Table 1: Algorithm variants.

Variants
Diversity Transfer

objective selection scheme

RandomT & Div × random

MaxDivT & Div × max. diversity

RandomT & NoDiv random

Figure 4: Outline of the 4 scenarios depending on
the algorithm and the setup.

For the setup Exp1, 2 values for diversity threshold τdiv

are envisaged: 0.05 and 0.025, respectively corresponding to
expected numbers of transfers 25 and 45 during a run.

4.3.2 Control Algorithm

For the Control Algorithm, each controller is evaluated by
a single objective: the covered distance in simulation. There
is no transfer during the run and the best solution of the run
is the controller that maximizes the covered distance. Evo-
lutionary operators and parameters are the same as those
described for the Proposed Algorithm.

Each of the envisaged algorithms (Control and Proposed)
are tested in both setups (Figure 4).

5. RESULTS

5.1 Control algorithm in both setups
For the setup Exp1, 10 runs of the Control Algorithm

have been made. In this setup, relying on both simulations,
the best solutions achieve 12712 mm on average (sd = 687
mm) in the simple simulation and 309 mm on average (sd
= 200 mm) once transferred in the accurate one. The cor-
responding exact STR disparities are 55.51 on average with
standard deviation 26.41. Such performance loss from ac-
curate to simple simulation highlights a very strong reality
gap problem with the setup Exp1 and prevents to resort to
a classic single-objective fitness-based evolution.

The Control Algorithm has been repeated 5 times for the
setup Exp2, relying on the accurate simulation and the real
robot. The best solutions achieve 1327 mm on average (sd =
67 mm) in the accurate simulation and 535 mm on average
(sd = 442 mm) on the real robot. The corresponding STR
disparities are 1.70 on average with standard deviation 1.46.



Table 2: Expected and observed numbers of trans-
fers for each variant and diversity threshold value
τdiv in both setups.

Setup τdiv

Expected
Variants

Observed nb.
number mean sd

Exp1

0.05 25
RandomT & Div 26 6
MaxDivT & Div 25 5

RandomT & NoDiv 28 6

0.025 45
RandomT & Div 44 8
MaxDivT & Div 46 9

RandomT & NoDiv 57 6

Exp2 0.1 10 RandomT & Div 11 2

The gap problem is more complex than for setup Exp1

because among the best solutions found in 5 runs, 2 con-
trollers transfer well on the physical robot and 3 don’t. Two
conclusions can be drawn from these results:

• the accurate simulation is worthwhile because it allows
sometimes to find good solutions that transfer well on
the real robot;

• there is a reality gap problem anyway with setup Exp2.

Now that the reality gap problem has been emphasized in
both setups, results obtained with our algorithm are shown.

5.2 Proposed algorithm in setup Exp1

Each algorithm variant has been repeated 10 times, with
diversity threshold values τdiv 0.05 and 0.025. For the nor-
malization of the features the vector {14.0, 0.76, 3.14} is
used. It corresponds to their upper bound values in the sim-
ple simulator. The obtained results are shown on the Figure
6. The number of transferred controllers for setup Exp1 are
shown in Table 2. The observed number of transfers are
comparable to the target values 25 and 45: it justifies the
diversity threshold values τdiv chosen by hand.

As the approximation of the STR disparity is modified
after each transfer experiment, the algorithm has to deal
with a dynamic optimization problem: the optimal solu-
tions change with time. Then, it has to be checked that
the found non-dominated solutions regarding the fitness and
the approximated STR disparity are also non-dominated re-
garding the fitness and the exact STR disparity. The Figure
5 shows the non-dominated set along with the last popu-
lation of a typical run (Proposed Algorithm, variant Ran-

domT & Div), expressed respectively in terms of approxi-
mated STR disparity on graph A and exact STR disparity
on graph B. The non-dominated solutions obtained with the
approximated disparity are either non-dominated or near to
the non-dominated set regarding the exact one. It tends to
justify the way of building the approximated STR disparity.

The RandomT & Div and MaxDivT & Div variants be-
have significantly better than the Control Algorithm. Glob-
ally, the RandomT & Div variant shows best results, as it
looks for better trade-off solutions. It notably validates the
random selection scheme. One of the best trade-off solutions
obtained during RandomT & Div variant’s runs achieves
1004 mm in the simple simulation and 989 mm once trans-
ferred in the accurate simulation with a 0.08 disparity value.
On average for this variant with τdiv = 0.05, the best solu-
tions achieve 859 mm in the simple simulation and 701 mm
in the accurate one with a 0.29 disparity value; on average
for τdiv = 0.025, we obtain 860 mm in the simple simulation
and 921 in the accurate one with a 0.25 disparity value.

Figure 5: Graph A: non-dominated individuals (cir-
cle) along with last population (cross) obtained with
a typical run in setup Exp1 (Proposed Algorithm,
variant RandomT & Div) in terms of covered dis-
tance in the simple simulation and approximated
disparity. The black circles are the non-dominated
set without taking into account the diversity objec-
tive. Graph B: same individuals (setup Exp1) ex-
pressed in terms of covered distance in the simple
simulation and exact disparity.

Figure 6: Results for setup Exp1: exact dispar-
ity (left, except for Control Algorithm: D∗ =
55.51, σD∗ = 26.41) and covered distance (mm, right)
in accurate simulation of the best solutions obtained
with each algorithm. The diversity threshold val-
ues τdiv are written above the variant names. All
variants behave better than the Control Algorithm
both in terms of disparity (Student T-test p-values
< 10−4) and distance (p-values < 10−2) except for
RandomT & NoDiv variant (p-value = 8.01 10−2).
Moreover, for RandomT & Div and MaxDivT & Div

variants, the disparities are clearly lower than 1: the
found best solutions show good transferability prop-
erties.



Figure 7: Results for setup Exp2: exact disparity
(left) and covered distance in reality (mm, right)
of the best solutions obtained with each algorithm.
Due to the few repetitions (5), it is hazardous to
compute any relevant statistical significance. How-
ever, the RandomT & Div variant behaves clearly
better than the Control Algorithm with disparities
lower than 1 and finds more efficient controllers on
average regarding the covered distance objective.

MaxDivT & Div variant finds worse trade-off solutions
on average than RandomT & Div variant, in terms of dis-
parity with τdiv = 0.05 (p-value=0.071) or of distance with
τdiv = 0.025 (p-value=0.029). It shows that transferring the
more different controller from the already transferred ones
is not ideal. Compared to a more intermediate controller,
its neighborhood indeed contains fewer individuals and the
corresponding exact disparity value therefore is less informa-
tive. Then, with similar numbers of transfers, the random
selection scheme for the transfer step (RandomT & Div)
variant has to be preferred to MaxDivT & Div variant.

The poor results obtained with RandomT & NoDiv show
that the behavioral diversity objective is necessary, as it
drives the search towards individuals different from those
already transferred, thus probably increasing the accuracy
of the approximated STR disparity.

Surprisingly, the number of transfers has no significant
effect on the quality of the best solutions. The proposed
algorithm doesn’t behave better on average with 45 transfers
than with 25. It proves that the algorithm should work with
relatively few transfer experiments.

To conclude, the proposed algorithm:

• finds relevant transferable controllers with STR dis-
parity values lesser than 1;

• works at best with a random transfer selection scheme;

• may work with few transfer experiments by run.

5.3 Proposed algorithm in setup Exp2

As setup Exp2 is very time consuming compared to setup
Exp1, we only allow 10 transfers on average during each run
with a diversity threshold value τdiv = 0.1. For the same
reason, we didn’t study the relevance of the approximated
STR disparity compared to the exact one as in setup Exp1.

The RandomT & Div variant has been repeated 5 times.
The features are normalized with the values {1.5, 0.2, 3.14}.
It corresponds to their upper bound values in the accurate
simulator. The obtained results are shown on the Figure
7. The observed numbers of transfers for setup Exp2 are
presented in Table 2 and validate the diversity threshold
τdiv = 0.1 designed for 10 transfers on average by run.

As for setup Exp1, the RandomT & Div variant behaves
better than the Control Algorithm on average despite the
very small number of transfer experiments, especially re-
garding the STR disparity. The best trade-off individual
among the best solutions obtained during RandomT & Div

variant’s runs achieves 1031 mm in the accurate simulation
and 962 mm on the real robot with a 0.005 STR disparity
value. On average for this variant, the best solutions achieve
914 mm in the accurate simulation and 783 mm on the real
robot with a 0.22 disparity value. The algorithm then finds
good solutions that transfer well on the real robot with only
few transfer experiments.

6. DISCUSSION
In our approach, controllers are evaluated in simulation

by a task-dependent fitness and a STR disparity value. As
we hypothesized that these 2 objectives are conflicting, we
proposed to evaluate individuals in a multi-objective way.
This antagonism has to be discussed according to the results
obtained in both setups.

For the setup Exp1 (simple simulation / accurate sim-
ulation), the shape of the non-dominated set shown on the
graph A of Figure 5 is consistent with the hypothesis of con-
flicting objectives: the higher the fitness in simulation, the
worse the approximated STR disparity. Moreover, as it can
be seen on the graph B of the same Figure, this antagonism
is also observed with the exact STR disparity. For the setup
Exp2 (accurate simulation / real robot) not enough runs
have been conducted to conclude, but the few experiments
also suggest conflicting objectives.

Despite this antagonism, using a soft constraint based
on the STR disparity value could provide an alternative
to multi-objective optimization. The most popular method
to handle soft constraints in evolutionary computation is
probably the penalty method [4]; however such a method is
highly dependent on the threshold value used to determine
if the constraint is satisfied. Multi-objective optimization is
another notable way to deal with soft constraints by treating
them as additional objectives in a multi-objective manner [3,
4]. Handling a constraint in such a way would be equivalent
to the method introduced in the present paper.

The possible implementation of our approach on different
problems has also to be discussed. The approach depends on
three main points that have to be defined in relation to the
setup: (1) a trajectory to compute the STR disparity mea-
sure; (2) a way to record this trajectory on the real robot;
(3) relevant behavioral features. For instance, let us assume
that we want to apply the approach to Jakobi’s experiment
described in [11]: controllers for Khepera mobile robots are
evolved to turn at the junction of a T-maze depending on
the position of a previously encountered light. The fitness is
the covered Manhattan distance to the start position, plus a
bonus if the robot has turned in the right corridor. Here, the
reality gap problem arises from how the junction is modeled
in the simulation. In this experiment: (1) the STR dis-
parity could be the nMSE between the simulated and real



Manhattan distances to the start position; (2) the Manhat-
tan distance in reality could be inferred from a trajectory
recorded by CODA scanners and a marker fixed at the top
of the robot; (3) the behavioral features could be the covered
Manhattan distance and the distances on average to the left
and right walls.

The reality gap problem also arises for systems like bird-
sized unmanned aerial vehicles that correspond to little-
known dynamical phenomena. Then, we could use the ap-
proach for instance to evolve transferable controllers for the
stabilization of a quadrotor helicopter like in [13]. Here,
the state of the quadrotor includes the attitude angles along
with the angular velocities. The fitness is defined as the Eu-
clidean distance between the final state and the target one.
In this setup, (1) the exact STR disparity could be the Eu-
clidean distance between the simulated and real trajectories
in the state space; (2) in reality, the quadrotor could be fixed
on a Whitman training stand [9] and an inertial measure-
ment unit could be used to record the attitude angles along
with the angular velocities; (3) choosing meaningful behav-
ioral features is more difficult for this application. We could
envisage to select pitch and roll variations as they are linked
to quadrotor’s stability, but further investigations have to
be done before any choice.

7. CONCLUSION
This paper addressed the reality gap problem in the case of

controller transfer, a critical issue in Evolutionary Robotics,
which often relies on simulators. An evolutionary algorithm
that looks for not only good controllers but also transferable
ones has been implemented. Controllers are evaluated by 2
objectives in a multi-objective manner: a task-dependent
fitness and a simulation-to-reality disparity that estimates
controller’s transferability.

The application to an 8-DOF quadrupedal walking robot
shows promising results by finding controllers that are rel-
evant regarding a walking task and that transfer well to
reality. The proposed algorithm outperforms a more classic
evolutionary approach regarding both exact STR disparity
and covered distance in reality despite the low number of
transfers conducted during the runs.

Based on these successful results, the approach appears
to be a simple and relevant method to efficiently cross the
reality gap in Evolutionary Robotics.
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